	Chapter- 1 Solid State (Marking Scheme)
	SECTION- A (1 Marks Each)
Q1.	Coordination no of A = 8 and B = 4
Q2.	Interstitial defect.
Q3.	Group 13-15 compounds eg Alp, GaAs have large covalent character whereas Gr – 12-16 compounds eg Zns, Cds, HgTe do not possess covalent character but have sufficient ionic character. However all of them are semiconductors.
Q4.	Phosphorous or arsenic
Q5.	r = 125 pm a = ? Fcc, a = $\frac{4}{\sqrt{2}}$ r = $\frac{4X \cdot 125}{\sqrt{2}}$ = $\frac{500}{1.414}$ = 353.61 pm. SECTION- B (2 Marks each)
0/	
Q6.	 a) Zns shows Frenkel defect because its ions have large difference in size. b) AgBr shows both Frenkele and schottky defects.
Q7	Number of P atoms per unit cell = 1 (at the body centre) X 1 = 1 Number of Q atoms per unit cell= 8 (at the corners) X 1/8 = 1 Formula is PQ
	Coordination number of each of P and Q = 8.
Q8. Q9	AC ² = AB ² + BC ² (2R) ² = (R + r) ² + (R + r) ² = 2 (R + r) ² 4R ² = 2 (R + r) ² 2R ² = (R + r) ² $\sqrt{2R}$ = R + r r = $\sqrt{2R} \cdot R$ r = $(\sqrt{2} \cdot 1) R$ = (1.414-1)R r = 0.414R 98 Ni atoms are associated with 100 'o' atoms out of 98 Ni atoms, suppose Ni present as :
	Ni ²⁺ = x Ni ³⁺ = 98-x Total charge on x Ni ²⁺ and (98-x) Ni ³⁺ should be equal to change on 100 O ²⁻ ion X x 2 + (98-x) x 3 = 100x2 2x + 294- 3x = 200 X = 94 Fraction of Ni present as Ni ²⁺ = $\frac{94}{98}$ X 100 = 96% Fraction of Ni present as Ni ³⁺ = $\frac{4}{98}$ X 100 = 4%
Q10	$d = \frac{z \times 14}{a^3 x N_A}$ $a^3 = \frac{z x M}{d x N_A}$ $z = 4, M = 58.5 \text{ g mol}^{-1}, d = 2.165 \text{ cm}^{-3}$ $NA = 6.02 \times 10^{23} \text{ mol}^{-1}$

	$a^{3} = \frac{4x58.5}{2.165x6.02x10^{23}} \frac{X10}{X10} = \frac{2340 x10^{-24}}{2.165x6.02}$
	$a = \left(\frac{2340}{2465 \times 600}\right)^{1/3} \times 10^{-8}$
	$ et x = \left(\frac{2340}{2.165x6.02}\right)^{1/3} $
	(2.165×6.02)
	$\lg x = \lg \left(\frac{2340}{2.165x6.02}\right)^{1/3}$
	= 1/3 (lg 2340 = lg 2.165 - lg 6.02)
	= 1/3 (3.3692 - 0.3355 - 0.7796)
	= 1/3 [2.2541]
	lg x = 0.7514
	x = Antilog (0.7514) = 5.641
	$a = 5.6 41 \times 10^{-8} \text{ cm} = 564.1 \times 10^{-10} \text{ cm}$
	= 564.1 pm
	$a = 2 (r_c + r_a)$ $r_c + r_a = a/2$
	$r_{c} + r_{a} = \frac{372}{2}$ $r_{Na} + r_{cl} = \frac{564.1}{2} = 282.05 \text{ pm}.$
	SECTION- C (3 Marks each)
Q11.	Let the number of oxide ions (O2) in close packing be x.
	No of octahedral voids = x
	As 2/3 rd of the octahedral voids are occupied by ferric ions, number of ferric ions present $= 2/3 \times X = 2x/3$
	Ratio of Fe^{3+} : $O^{2-} = 2x/3$: $x = 2:3$
	Formula = Fe_2O_3 .
Q12	Ferromagnetic substances make better permanent magnets because the metal ions of a ferromagnetic
	substance are grouped into small regions called domain. Each domain act as a tiny magnet. These domains are randomly oriented. When a ferromagnetic substance 4 placed in a magnetic field call the domains are randomly oriented. When a ferromagnetic substance is placed in a magnetic field, all the domains get oriented in the direction of the magnetic field and a strong magnetic field and a strong magnetic field is produced. Such order of domains persists even when the external magnetic field is removed.
	SECTION- D (4 Mark)
Q13	As Nacl is doped with 10^{-3} mol % Sr Cl ₂ .
	100 mol of Nacl are doped with 10^{-3} mol of srCl ₂
	1 mol of Nacl is doped with srcl ₂ = $\frac{10^{-3}}{100}$ mol
	$= 10^{-5}$ mol
	As each sr ²⁺ ion introduces one cation vacancy conc. of cation vacancies = $10^{-5} \times 6.02 \times 10^{23} \text{ mol}^{-1}$ = 6.02 X 10^{18} mol^{-1} .
	SECTION – E (5 Mark)
14	a) Packing Efficiency = $\frac{\text{volume occupied by atom in unitcell}}{\text{Total values of unit cell}} \times 100$
	= 74 %
	b)i) Na ₂ O
	$Na^+ = 4$, $O^{2^-} = 8$
	ii) $Ca^{2+} = 8$, $F = 4$ c) i) A void surrounded by four spheres occupying the corners of tetrahedron called tetrahedral void. It is much
	c) i) A void surrounded by four spheres occupying the corners of tetrahedron called tetrahedral void. It is much smaller than the size of sphere in the close packing. A void surrounded by six sphere along the corners of an
	octahedral voids is smaller than that of the spheres in the close packing but large than the tetrahedral void.
	ii) The regular three dimensional arrangement of identical points in the space which represent how the
	constituent particles are arranged in a crystal. A unit cell is the smallest portion of a crystal lattice, which when
	repeated over and again in different directions produce the complete crystal lattice.

Chapter-2	(Solution)
-----------	------------

Ans 1	Molal depression constant may be defined as the depression in freezing point when the molality of the solution is unity ie one mole of the solute is dissolved in 1000 g of the solvent.	
Ans 2	$2A \rightarrow A_2$ 1 mole of A after association	
	$i = \frac{1}{2} = 0.5$ gives $\frac{1}{2}$ mole of A ₂	
Ans3	On adding cyclohexane to ethanol, its molecules get in between the molecules of ethanol thus breaking the hydrogen bonds and reducing ethanol- ethanol interactions. This will increase the vapour pressure of the solution and result in positive deviation from Raoult's law.	
Ans 4	$\begin{array}{l} \Delta T_{f}=0.201^{0}C\\ Observed \ \Delta T_{f}=K_{f}\ x\ m\\ Calculated\\ \Delta T_{f}=1.86 x 01.\\ \qquad =.186^{0}C\\ i=\frac{0.201}{0.186}\\ =1.0806\\ HF=H^{+}+F^{-}\\ 1\ mol\ 0\ 0\\ I-\alpha \qquad \alpha \ \alpha\\ Total=1+\alpha\\ i=1+\alpha \qquad \alpha=i+l=0.0806\ or\ 8.06\% \end{array}$	
Ans 5	$\begin{split} \Delta T_{f} &= Kf m \\ \therefore Kf = \frac{\Delta Tf}{m} = \frac{273.15 - 271}{0.1539} \\ &= 13.97k/m \\ \Delta T_{f} &= \frac{1000kf w_{2}}{w1 M2} \\ &= \frac{1000x 13.97x15}{100x180} = 3.88 \\ \therefore Freezing point of the solution = 273.15 - 3.88k \\ &= 269.27K \end{split}$	
Ans 6	$M_{2} = \frac{1000 \text{ Kb W2}}{W1 \ \Delta \text{ Tb}}$ $Kb = \frac{M_{2}W1 \ \Delta \text{ Tb}}{1000 W_{2}}$ $= \frac{103x \ 87.90x \ 0.25}{1000x \ 0.90}$ $Kb = 2.515 \text{ K kg mol}^{-1}$	
Ans 7.	$\pi = CRT$ $C = \frac{\pi}{RT} = \frac{8.21}{.0821X310}$ $= 0.323M$ $= 0.323 \times 180g/L = 58.14g/L$	
Ans 8	$W_{2} = 10g \qquad W_{1} = 90g$ $n_{2} = \frac{10}{60} = \frac{1}{6} \qquad n_{1} = \frac{90}{18} = 5$ $P^{0} - p \frac{P^{0} P}{P^{0}} = \frac{n_{2}}{n_{2}} \qquad \frac{P^{0} - P}{P^{0}} = \frac{1/6}{5}$ $1 - \frac{P}{P^{0}} = \frac{1}{30}$ $\frac{-P}{P^{0}} = \frac{1}{30} - 1$ $\frac{P}{P^{0}} = \frac{29}{30} \times 55.3$ $= 53.45 \text{ mm}$	

Ans 9.	a) For a solution of volatileliquids, Raoult's law states that the partial pressure of each component of the solution is directly proprtional to its mole fraction present in solution	
	$P_A \alpha x_A$	
	$P_A = P_A^0 X_A$	
	Henry's law – The partial pressure of a gas in vapour phase 'p' is directly proportional to molefraction 'n' of the gas is directly proportional to molefraction 'x' of the gas in the solution.	
	P = Kb. x	
	\therefore Partial pressure of the volatile component or gas is directly proprtional to its molefraction p x x. Only the proportionality constant KH differs from P^0_A .	
	$\therefore \text{ It becomes a special case of Henry's law } K_{H} = P_{A}^{0}$	
	b) i) They will shrink due to plasmolysis.	
	ii) They will swell and may even burst.	
	RBCs are isotonic with 0.9% NaCl solution.	
Ans 10.	$\Lambda If = \frac{1000Kf.w_2}{1000Kf.w_2}$	
	$\Delta \Pi = \frac{W_1 M_2}{W_1 M_2}$	
	$=\frac{1000X5.12x0.3}{}$	
	30X 60	
	= 0.853 K	
	$i = \frac{\Delta T f \text{ observed}}{\Delta T f \text{ calculated}}$	
	$=\frac{0.45}{0.527}=0.527$	
	b) NaCl dissociates to give two ions (Na ⁺ + Cl ⁻) Na ₂ SO ₄ dissolves to give three ions (2Na ⁺ , SO ₄ ²⁻) Thus their	
	equimolar solutions have different oncentration of ions As osmotic pressure depends upon	
	concentration of particles, they have different osmotic pressure.	

Chapter- 3 (Electro Chemistry)

Ans 1	Molar conductivity of weak electrolytes keep on increasing with dilution and does not become constant	
	even at very large dilution.	
Ans 2	At anode Pb (s) + SO ₄ ²⁻ (aq) \rightarrow PbSO ₄ + 2e ⁻	
	At cathode $PbO_2(s) + SO_4^2(aq) + 4H^+(aq) + 2e^- \rightarrow PbSO_4(s) + 2H_2O$	
	$Pb(s) + PbO_2(s) + 4H^+(aq) + 2SO_4^{2-}(aq) \rightarrow 2PbSO_4(s) + 2H_2O$	
Ans3	$\bigwedge m^{0}[Ba(OH)_{2} = \bigwedge^{0}m(BaCI_{2}) + 2 \bigwedge^{0}m(NaOH) - 2 \bigwedge^{0}mNaCI$	
	$= 2.800 \times 10^{-2} + 2 [2.481 \times 10^{-2}] - 2 \times 1.265 \times 10^{-2}$	
	$= 5.232 \text{ x } 10^{-2} \text{ Sm}^2 \text{ mol}^{-1}.$	
Ans 4	$Ni + 2Ag^+ \longrightarrow Ni_2 + + 2Ag$	
	E ^o cell = Ecathode - Eanode	
	= .80 – (-0.25)= 1.05V	
	As EMF is positive, reaction is spontaneous.	
Ans 5	$Fe + 2H^+ \longrightarrow Fe^{2+} + H_2$	
	$E cell = E^{0}cell - \frac{0.0591}{2} \log \frac{[Fe^{2+}]}{(H^{+})^{2}}$	
	$= 0.44 - \frac{0.0591}{2} \log \frac{0.001}{1^2}$	
	E cell = 0.53V	
Ans6	Equivalent conductivity of a solution V is defined as the conductance of all the ions produced from 1gm	
	equivalent of the electrolyte dissolved in Vcm ³ of the solution when the distance between the	
	electrodes is 1 cm and area is large to contain whole of the solution	
	$\wedge eq = Kc \times \frac{1000}{Normality}$	
	$= \text{ohm-} \text{cm}^{-1} \frac{cm^3}{gmeg}$	
	= onm 'cm² eg '.	
	or Sm ² eg ⁻¹ SI unit.	
Ans 7	Anode reaction : Cu(s) \longrightarrow Cu ²⁺ (aq) + 2e	
	Cathode reaction $CI_2(g) + 2e^- \longrightarrow 2CI^-(aq)$	
	Net reaction $Cu(s) + Cl_2(q) \rightarrow CuCl_2(aq)$	
	E^{o} cell = E^{o} c - Ea^{o}	
	= 1.36 - 0.34	
	= 1.02V	
	E^{0} cell = $\frac{0.591}{2}$ log kc	
	Log kc = 34.5178	
	Kc = antilog 34.5178	
	$Kc = 3.29 \times 10^{34}$	
Ans 8.	Specific conductance K = 1/R X cell constant	
	$=\frac{1}{1005}$ X 1.25	
	$= 0.001244 \text{ ohm}^{-1} \text{ cm}^{-1}$	
	Molar conductance $M = \frac{K x 1000}{M} = \frac{.001244x 1000}{7.5x 10^{-3}}$	
	Molar conductance $7 \times \text{m} = \frac{M}{M} = \frac{7.5 \times 10^{-3}}{7.5 \times 10^{-3}}$	
	$= 165.87\pi^{-1} \text{cm}^2 \text{ mol}^{-1}$	
Ans 9	a) Rusting of iron takes place in presence of H^+ ions. Alkaline medium neutralises the H^+ ions and	
	thereby inhibits rusting.	
	b) This is because acidic NH_4CI corrodes the zinc container.	
A 40	c) As on dilution, number of ions per unit volume decreases.	
Ans10	a) Its pollution free device since no harmful products are formed.	
	b) Efficiency is 75% higher than conventional cells.	
Ans 11	Iron surface is covered with more electropostive metal like in which gets oxidised in preference to iron	
	: the metal is sacrificed at the cost of iron, zinc is coated under process galvinisation.	

Apc 1	Asid satalysed by dralysis of other asstate	
Ans 1	Acid catalysed hydrolysis of ethyl acetate $CH_3COOC_2H_5 + H_2O \xrightarrow{H_+} CH_3COOH + C_2H_5OH$	
Ans 2	$Rate = K [CH_3COOC_2H_5]$	
	Order of reaction = $\frac{1}{2}$ + 2 = $\frac{5}{2}$	
Ans3	The half life($t_{1/2}$) of a reaction is the time in which the concentration of a reactant is reduced to one half	
	of its initial concentration.	
	a) $t_{1/2}$ for a zero order reaction = $\frac{[R]_0}{2k}$	
	$[R]_0$ = initial concentration . K = rate constant	
	b) $t_{1/2}$ for a first order reaction = $\frac{0.693}{\kappa}$	
Ans 4	Rate law : it is an enperimentally determined expression which relates the rate of reaction with	
ALIS 4	concentration of reactions :	
	$A + B \longrightarrow Products$	
	$R \alpha [A]^m [B]^n$	
	$R = K [A]^{m} [B]^{n}$	
	Where 'K' is constant	
	$[A] = [B] = 1 \text{ mol } I^{-1}$	
	Rate = K.	
	Rate constant as the rate of reaction when the concentration of each reactant in the reaction isunity.	
	i) general units of rate constant	
	$K = (molL^{-1})^{1-n} S^{-1}$	
	$L-1 \text{ mol S}^{-1} = (\text{mol } L^{-1}) 1^{-n} \text{ s}^{-1}$	
	$-1 = -1+n \longrightarrow n = 0$ reaction order = 0	
	ii) L mol ⁻¹ s ⁻¹ (molL ⁻¹) 1 ⁻ⁿ s ⁻¹	
	1= -1 + n → n = 2 or -1 = 1-n	
	Reaction order = 2.	
Ans 5.	Order of reaction	
	(i) it is the sum of the powers of the conc of the reaction in the rate law expression :	
	ii) It is determined experimentally	
	iii) It can be or a fraction.	
	iv) order is applicable toelomentary as well as complex reaction.	
	Molecularity :	
	i) It is number of reacting species taking part in an elementary reaction, which must collide	
	simultaneously so as to result into a chemical reaction.	
	ii) It is a theoretical concept. iii) It cannot bezero or a fraction.	
	iv) Molecularity is applicable only for elementary reactions for complex reaction it has no meaning.	
Ans 6.	For a first order reaction take 40 min for 30% decomposition.	
7115 0.	$(2.303)_{12} [R]^0$ 100 10	
	$K = \frac{2.303}{t} \log \frac{[R]^0}{[R]} = \frac{100}{100 - 30} = \frac{10}{7}$	
	$K = \frac{2.303}{40} \log \frac{10}{7}$	
	$K = \frac{2.303}{40} \log 1.428 = \frac{2.303}{40} \times 0.1548$	
		1
	40 40 40 40	
	$K = 8.91 \times 10^{-3} \text{ min}^{-1}$	
	$K = 8.91 \times 10^{-3} \text{ min}^{-1}$	

Ans7.	$t = \frac{2.303}{K} \log \frac{[R]_0}{[R]_0} \text{ as } [R] = \frac{[R]_0}{16}$	
	$t = \frac{2.303}{K} \lg \frac{[R]_0}{[R]_0} = \frac{2.303}{60} \times 4 \lg 2$	
	16	
	$=\frac{2.303}{60}$ X 40X 0.3010 = 4.62X10 ⁻² s	
Ans 8.	t = 100 min	
	$K = \frac{2.303}{100} \log \frac{a}{a-x}$	
	For 60% completion of the reaction	
	If $a = 100\%$	
	a - x = 100 - 60 = 40%	
	$k = \frac{2.303}{100} \log \frac{100}{40} $ (i)	
	for 90% completion of the reaction	
	a = 100 % a-x = 100- 90=10%	
	$k = \frac{2.303}{t} \lg \frac{100}{10}$ (ii)	
	Substituting the value of k in eq (ii)	
	$\frac{2.303}{100} \log \frac{100}{40} = \frac{2.303}{t} (: \log 10 = 1)$	
	$\frac{100}{100} \text{ Ig } \frac{1}{40} = \frac{1}{t} (\text{ Ig IO} = 1)$	
	$\frac{1}{t} = \frac{1}{100} \lg \frac{100}{40}$ $\frac{1}{t} = \frac{0.3979}{100} \longrightarrow t = \frac{100}{0.3979} = 251.2 \text{ min.}$	
	$\frac{1}{t} = \frac{0.3979}{100} \longrightarrow t = \frac{100}{0.3979} = 251.2 \text{ min.}$	
Ans 9.	$T_1 = 300 \text{ K}$, $T_2 = 320 \text{ K}$ $K_2/K_1^{=4}$	
	$R = 8.314 \text{ J mol}^{-1} \text{ k}^{-1}$	
	$\lg \frac{K_2}{K_1} = \frac{E_a}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$	
	$E_{\pi} = 20$	
	$\lg 4 = \frac{E_a}{2.30x8.314} \times \frac{20}{96000}$	
	$Ea = .\underline{602 \times 2.303 \times 8.314 \times 96000}_{20} = 55327.58\% \text{ j mol}^{-1}.$	
Ans 10	$\frac{20}{K_1 = 0.25, K_2 = 0.07S^{-1}}$	
AIIS IU	$T_1 = 500 \text{ k}$, $T_2 = 700 \text{ K}$	
	$R = 8.31 \text{ 4 JK}^{-1} \text{ mol}^{-1}$	
	$\lg \frac{K2}{K1} = \frac{Ea}{2.303x \ 8.314} \left[\frac{700 - 500}{5000x700} \right]$	
	$a_{R1} = 2.303x 8.314 L5000x700J$ Ea = 18230.35 Jmol ⁻¹	
Ans11	$(CH_3)_2 CHN = NCH (CH_3)_2 (g) \longrightarrow N_2(g) + C_6 H_{14}(g)$	
	Initial Pressure : Po O O	
	After time t : Po-P P P	
	Total pressure after time (t) (Pt) = $(Po - P) + P + P = Po + P$	
	$P = P_t - Po$ a α Po and (a -x) x P ₀ - P substituting the value of 'P' a - x α Po - (Pt - Po) i.e. (a - x) α 2 Po - P _t for first	
	order reaction.	
	$K = \frac{2.303}{t} \lg \frac{a}{a-x}$	
	t t g_{a-x} 2.303 h Po	
	$=\frac{2.303}{t}$ lg $\frac{Po}{2Po-Pt}$	
	t = 3 60s K = $\frac{2.303}{360}$ lg $\frac{35}{2x35-54}$ = $\frac{2.303}{360}$ lg $\frac{35}{16}$	
	2^{303} + 2400 - 2175 + 10 ³ c ¹	
	$=\frac{2.303}{360} \text{ x} .3400 = 2.175 \text{ x} 10^{-3} \text{ S}^{-1}$	
1		

Chapter-5

Ans 1	The adsorption of gases on the surface of metals is called occlusion.	
Ans 2	Sol : Paints, cell fluids	
	Gel : Butter, Cheese	
Ans3	Fe^{3+} ion has greater coagulating power than K^+ ion as ferric ion has higher charge.	
Ans 4 i)	The effective ions of the electrolyte in bringing about coagulation are those which carry charge opposite to that of the colloidal particles. These ions are called coagulating ions/ flocculating ions. ii) Greater the valency of the coagulating or floccutating ion greater is its power to bring about coagulationvely charged arsenious sulphide Al ³⁺ > Ba ²⁺ > Na ⁺ .	
Ans 5	 Dialysis : It's a process of removing a disoolved substance from a colloidal solution by means of diffusion through a suitable membrane. It is a method of purification of colloidal solution. Electrophoresis : The movement of colloidal particles towards oppositely charged electrode in an electric field is called electrophoresis. Tyndalla Effect : The scattering of light by the colloidal particles present in a colloidal sol. Is called Tyndall effect. 	
Ans 6	It's a chemical reaction in which the rate depends on the pore size of the catalyst and also on the shape and size of the reactant and product molecules. Zeolites acts as a shape –selective catalyst, with pore size usually varies from 260 to 740 pm. ZSM-5	
Ans 7	The process of physiosorption for example that of H ₂ on finely divided nickel involves weak vander Waals forces. With increase in temperature, hydrogen molecules dissociate into hydrogen atoms which are held on the surface by chemisorption.	
Ans 8	Yes, clouds are colloidal in nature and carry charge spray of silver iodide an electrolyte results in coagulation leading to rain.	
Ans 9	 i) As physiosorption is an exothermic process solid + Gas → Gas / Solid and Δ ∴ Le chateliers principle if we increase the temperature, equilibrium will shift in the backward direction, gas is released from the adsorbed surface. ii) Ice-creams are emulsions which get stabilised by emulsifying agents like gelatin. iii) The cleansing action of soap such as sodium stearate is due to the fact that soap molecules from micelle around the oil droplet in such a way that hydrophobic part of the stearate ions is in the oil droplet and hydrophilic part projects out of the grease droplet like bristles. Polar groups interact with water, the oil droplet surrounded by stearate ions Is now pulled in water and removed from the dirty surface. 	
Ans 10	 a) \$\frac{x}{m}\$ = K p 1/n log \$\frac{x}{m}\$ = log K + \$\frac{x}{m}\$ log P. b) i) they are reversible in nature once the dispersed phase is separated from dispersion medium the sol can be made again by simply remising with dispersion medium. ii) Associated collord - soaps and detergents multimolecular colloid sulphur sol, gold sol. 	

Chapter-6 (General Principles and Processes of Isolation of Elements) Marking Scheme

Ans 1	At high temperature carbon and hydrogen react with metals to form carbides and by hydrides.	
Ans 2	Van ARkel method.	
Ans 3	NaCN (Sodium cyanide), used as a depressant.	
Ans 4	i) Silica ii) Lime	
Ans 5	 i) Electrdytic refining of a metal : In this method impure metal is made to act as anode. A strip of same metal in pure form is used as cathode. They are put in electrolytic both containing soluble salt of same metal on passing electric current, metal ions from the electrolyte solution are deposited at the cathode in the form of pure metal while an equivalent amount of metal dissolves from the anode and goes into the electrolyte solution as metal ions. ii) During leaching Ag is oxidised to Ag+ which then combines with CN ions to forms soluble complex. [Ag(CN)₂]⁻ silver is then recovered from this complex by displacement method using more electropositive zn metal. 2(Ag (CN)₂]⁻ (aq) + Zn(s) → 2Ag (S) + [Zn (CN)₄]²⁻ (aq) 	
Ans 6	 i) Zone refining method based on the principle that impurities are more soluble in the melt than in the solid state of the metal. ii) Chromatographic method : based on the principle that different components of a mixture are absorbed to different extent on an absorbent. The adsorbed components are removed by using suitable solvents. 	
Ans 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Ans 8	The free energy of formation ($\Delta_f G^\circ$) of Co from C becomes lower at temp above 1120 K whereas that of Co ₂ from C becomes lower above 1323 K than $\Delta_F G^\circ$ of ZnO. However $\Delta f G^\circ$ of CO ₂ from CO is always higher higher than that of ZnO. Therfore 'C' can reduce zno to zn but not Co. Therefore out of C and Co, C is a better reducing agent than CO or ZnO.	
Ans 9	$\begin{array}{l} \Delta_{f}G^{0} \mbox{ of } cu_{2}s \mbox{ is more- ve than those of } CS_{2} \mbox{ and } H_{2}S.\\ So, neither carbonor Hydrogen can reduce Cu_{2}s \mbox{ to } Cu \mbox{ metal.}\\ Cu_{2}S \ +H_{2} \longrightarrow 2Cu \ +H_{2}S\\ 2Cu_{2}S \ +C \longrightarrow 4Cu \ +CS_{2}\\ \Delta_{f}G^{0} \mbox{ of } Cu_{2}O \mbox{ is much less -ve than that of CO and hence carbon can easily reduce Cu_{2}O \mbox{ to } Cu.\\ Cu_{2}O \ (s) \ +C(s) \longrightarrow 2Cu(s) \ +CO(g)\\ Thus the entraction of copper from pyrite is more difficult than from its oxide ore through reduction.\\ \end{array}$	
Ans 10	i) 4/3 Al (s) $+ O_2(g) \longrightarrow 2/3 Al_2O_3$ (si) $\Delta_f G^0 = -827 Kj/mol$ ii) 4/3 Cr(s) $+ O_2(g) \longrightarrow 2/3 Cr_2O_3(s)$; $\Delta_f G^0 = -540 Kj/mol^{-1}$ Subtract eq (ii) from (i) 4/3 Al(s) $+ 2/3 Cr_2O_3$ (s) $\longrightarrow 2/3 Al_2O_3$ (s) $+ 4/3 Cr(s)$; $\Delta r G^0 = -287 Kj/mol$ As $\Delta r G^0$ of the combined redax reaction is -ve therefore reduction of Cr ₂ O ₃ by 'Al' is possible.	
Ans 11.	(i) Leaching of baunite ore to prepare pure alumina : $Al_2O_3(s) + 2NaoH(aq) + 3H_2O(l) \longrightarrow 2Na[Al(OH)_4] (aq)$ $2Na[Al(oH)_4] (aq) + 2CO_2(g) \longrightarrow Al_2O_3 x H_2O (s) + 2NaHCO_3(aq)$ $Al_2O_3. xH_2O(s) \xrightarrow{1470K} Al_2O_3(S) + xH_2O(g)$ iii) $Zr(s) + 2l_2(g) \xrightarrow{870K} Zrl_4(g)$ $Zrl_4(g) \xrightarrow{2075K} Zr (s) + 2l_2(g)$ Pure Filament	
	iii) $4Au(s) + 8CN^{-}(aq) + 2H_2O(u) + O_2(g)$ $4[Au(CN)_2]^{-}(aq) + 4OH^{-}(aq)$ Gold is recovered from $[Au(CN)_2]$ - complex by displacement method using a more the metal zinc $2[Au(CN)_2]^{-}(aq) + Zn(s) \longrightarrow 2Au(s) + [Zn(CN)_4]^{2-}(aq)$	

Ans 12	i) Pig iron into steel : By heating in a converter. A blast of oxygen disluted with CO ₂ is blown through converter. Oxygen reacts with impurities and raises the temperature to 2173 K. Carbon gets oxidised to Co which burns off at the mouth of the converter. Oxides of silicon and Mg from slag. When the flame is stopped, slag is tapped off and other metals like Mn, Cr, Ni, W may be added in the end. ii)Impure titanisum is heated with iodine to form volatile Til ₄ , which decomposes on tungsten filament at high temp. to give pure titanium. Ti (s) + $2l_2(g) \xrightarrow{523K}$ Til ₄ (g) $\xrightarrow{1700}$ K Ti(s) + $2l_2(g)$ pure impure. iii)Zinc oxide into metallic zinc : reduction of znO is done using coke, as a reducing agent. ZnO + C \xrightarrow{coke} Zn + Co The metal is distilled off and collected by rapid chilling.	
Ans 13	Carried out with acids in the presence of air when copper goes into solution as Cu^{2+} ions. $2Cu(s) + 2H_2 SO_4(aq) + O_2(g) \longrightarrow 2CuSO_4(aq) + 2H_2O(l)$	
Ans14	Copper matte consists of Cu_2S and Fes. When a blast of hot air is passed through mol ten matter taken in a silica lined converted Fes present in matte is oxidised to FeO which combines with silica (SiO ₂) to form FeSiO ₃ , Slag. 2Fes + 3O ₂ \longrightarrow 2FeO + 2 SO ₂ FeO + SiO ₂ \longrightarrow Fe SiO ₃ Silica \longrightarrow Slag When whole of iron has been removede as slag, some of the Cu ₂ s undergoes oxidation to form Cu ₂ O which then reacts with more Cu ₂ S to form copper metal. 2Cu ₂ S + 3O ₂ \longrightarrow 2Cu ₂ O + 2 SO ₂ 2Cu ₂ O + Cu ₂ S \longrightarrow 6Cu + SO ₂ Thus copper matte is heated in silica lined converted to remove Fes present in matte as FeSiO ₃ slag.	
Ans 15	Many reaction which are non spontaneous ($\Delta 4$ is the) can be made to occur spontaneously if these are coupled with reaction having larger -ve free energy. By coopling means currying out simultaneously both non spontaneous and spontaneous reaction eg decomposition of Fe ₂ O ₃ into iron is non spontaneous ($\Delta G^{0} = + 1487$ kj/mol. However this de composition can take place spontaneously if co is simultaneously burn in oxygen ($\Delta G = -514.4$ kj/mol) $2Fe_{2}O_{3}(s) \longrightarrow 4fe(s) + 3O_{2}(g) i) \Delta G^{0} = + 1487$ Kj/mol $2CO(g) + O_{2}(g) \longrightarrow 2CO_{2}(g) ii) \Delta G^{0} = -514.4$ kj/mol Multiplying eq ii) by 3 and then adding to eg (i) $6CO(g) + 3O_{2}(g) \longrightarrow 6CO_{2}(g) \Delta G^{0} = - 1543.2$ kj/mol $2Fe_{2}O_{3}(s) \longrightarrow 4Fe(s) + 3O_{2} \Delta G^{0} = + 1487$ Kj/mol $2Fe_{2}O_{3}(s) \longrightarrow 4Fe(s) + 3O_{2} \Delta G^{0} = + 1487$ Kj/mol $\Delta G^{0} = -56.2$ kj/mol Since ΔG^{0} in the reduction of Fe ₂ O ³ with CO is -ve therefore reaction is feasible and spontaneous.	

Chapter-7	
Chapter-7	

Ans1	PH ₃ reacts with acids like HI to form PH4 ⁺ I ⁻ .	
	H_3P : + $H^+I^- \longrightarrow [PH_4^+][I^-]$	
Ans 2	\therefore due to presence of lone pair of electrons on P. PH ₃ acts as a lewis base.	
AIIS Z	As the size of the element increases down the group the E-H bond dissociation energy decreases and hence E-H bond breaks more easily : thermal stability of the hydride of gp 16 elements decreases down	
	the group $H_2O > H_2S > H_2Se > H_2Te > H_2P_0$	
Ans 3	$i)P_4 + 10SO_2Cl_2 \longrightarrow 4PCl_5 + 10SO_2$	
7115 0	i) $XeF_6 + 3H_2O \longrightarrow eO_3 + 6HF$	
Ans 4	i) 0-4	
	0/10-0/10	
	OH OH OH	
	H OH.	
	он.	
Ans 5	N due to absence of d orbitals cannot form $p\pi$ -d π multiple bonds As a result N cannot expand its	
	covalency beyond four but in $R_3H = O N$ has a covalency of 5. P due to presence of d orbitals form $p\pi$ -d π	
	multiple bonds and hence can expand its covalency beyond 4. \therefore P forms R ₃ P=O in which covalency of P	
	is 5. ii) This is due to polymeric structure of red phosphorus or angular strain in P ₄ molecule of white	
	phosphorus where the angle is only 60° .	
	iii)	
	NI NI	
	N.	
	:0: :0: :0	
Ans 6.	i) In vapour form sulphur partly exists as S ₂ molecules which have two unpaired electrons in the	
7115 0.	antibonding π^* . Molecular orbitals like O ₂ molecule and hence exhibits paramagnetism.	
	ii) Because +3 oxidation state of Bi is more stable than Sb due to inert pair effect.	
	iii) Soid PCI ₅ behaves as an ionic compound because it is a salt containing the tetrahndral cation $[PCI_4^+]$	
	and octahedral anion [PCl ₆ ⁻]	
Ans 7	i) Due to absorption of radiation in visible region which results in the excitation of outer electrons to	
	higher energy level while the remaining light is transmitted. The colour of the halogen is the colour of	
	transmitted light.	
	ii) ICI is more reactive than I ₂ because I-CI bond is weaker than I-I bond. ICI breaks easily to form halogen atoms which readily bring about the reaction.	
	iii) Do to small size the electron- electron repulsions in the relatively compact 2p subshell of F are	
	comparatively large ∴ incoming electron is not accepted with the same ease as in large 3p subshell of Cl	
	atom Energy released during formation of F ⁻ from F is less than that of Cl ⁻ .	
Ans8	i) As the electronegativity of the halogen decreases the electron density in the O-H bond increases. As a	
	result cleavage of O-H bond to liberate H ⁺ ions becomes little difficult ∴ acidic character decreases.	
	HO – CI > H-O-Br> H-O-I.	
	ii) NO_2 dimerises to get paired up and hence become paramagnetic.	
	iii) SF ₆ is sterically protected by six F atoms and hence does not allowe H_2O molecules to attack the S	
	atom. F does not have d orbitals to accept the electrons donated by H ₂ O molecules SF ₆ does not	
	undergo hydrolysis.	

(Marking	Scheme)	
----------	---------	--

Ans1	It is due to regular increase in Ionisation enthalphy.	
Ans2	Mn (Z = 25), as its atom has the max number of unpaired electrons. Thus it shows oxidation states from	
	+ 2 to +7 (+2, +3 , +4, +5, +6, +7) which is the maximum number.	
Ans3	Interstitial compounds are those in which small atoms occupy the interstitial sites in the crystal Lattice	
	Interstitial compounds are well known for trasition metals because small sized atom of H,B, C,N can	
	easily ocuupy position in the voids present in the crystal lattices of transition metals.	
Ans4	Roasted	
	$4Feo.Cr_2O_3 + 8Na_2CO_3 + 7O_2 \longrightarrow 8Na_2CrO_4 + 2Fe_2O_3 + 8CO_2$	
	Chromite ore	
	$2Na_2CrO_4 + H_2SO_4 \longrightarrow Na_2 cr_2O_7 + Na_2SO_4 + H_2O$	
	$Na_2 Cr_2 O_7 + 2KCI \longrightarrow K_2 cr_2 O_7 + 2NaCI$	
	K ₂ cr ₂ O ₇ is separated by Fractional crystallisation. In aqueous solution, dischromate and chromate ions	
	exist in equilibrium. On increasing the PH i.e on making the solution alkaline, dichromate ions (orange	
	coloured) are converted into chromate ions and thus, the solution turns yellow.	
Ans5	The same substance undergoes oxidation as well as reduction. In disproportionation reaction, oxidation	
	number of an element increases as well as decreases to form two differnet products.	
	$3Mn^{+6}O_4^{2-} + 4H^+ \longrightarrow 2Mn^{+7}O_4^{-} + Mn^{+4}O_2 + 2H_2O$ $3cr^{+5}O_4^{3-} + 8H^+ \longrightarrow 2Cr^{+6}O_4^{-2-} - Cr^{3+} + 4H_2O.$	
	$3cr^{+5}O_4^{3-} + 8H^+ \longrightarrow 2Cr^{+6}O_4^{2-} - Cr^{3+} + 4H_2O.$	
Ans6	In lanthanoids with increasing atomic no, the atomic and ionic radii decreases from one element to the	
	other, but the decrease is very small. It is because, for every additional proton in the nucle-us, the	
	corresponding electon goes into a 4f subshell, which is too diffused to screen the nucleus as effectively	
	as the more localised inner shell. Hence the attraction the nucleus for the outermost electron increases	
	steadily with the atomic number. Consequences :	
	a) The properties of second and third transition series are similar.	
	b) Basic strength decreases from La(OH3)3 to Lu $(*OH)_3$.	
	c) Lanthanide contraction makes separation of lanthanoid possible.	
Ans7	i) $[MnO_4^+ + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O] \times 2$	
	$S^2 \longrightarrow S + 2e^3 \times 5$	
	$2MnO_4^{-1} + 5S^{2-} + 16H^+ \longrightarrow 2Mn^{2+} + 5S + 8H_2O$	
A O	ii) $Cr_2O_7^{2^-} + 2OH^- \longrightarrow 2CrO_4^{2^-} + H_2O^-$ i) $Mn^{3^+} = 3d^4 = 4$ unparied e	
Ans8		
	iii) $V^{3+} = 3d^2 = 2e^{-1}$ iv) $Ti^{3+} = 3d^{-1} = 1e^{-1}$	
A O		
Ans9	i) This is due to the presence of voids of appropriate sizes in their crystal lattices.	
	ii) Zn ²⁺ ion has its orbitals completely filled where as in Cu ²⁺ ion there is one half- filled 3-d orbital. Therefore, due to d-d transition Cu ²⁺ has a tendency to form coloured sals whereas	
	Zn^{2+} has no such tendency.	
	iii) In these oxoanions the oxygen atom are directly bonded to the transition metal. Sicne	
	oxygen is highly electronegative, the oxaganions bring out the highest oxidantion state of	
	the metal.	
	iv) It sbecause after losing one more electron ce acquries stable 4F ⁻ electronic configuration.	
Ans10	a) Negative E^0 values for Mn^{2+} and Zn^{2+} are related to stabilities of half –filled and fully filled	
	ocnfiguration. But for Ni ²⁺ , E ⁰ value is rewlated to the highest negative enthalypy of hydration.	
	b) This is due to d-d transition of electron in $[Ti(H_2O_6)^{3+}$ complex Ti ³⁺ has one e ⁻ in d-orbital (3d)	
	which absorbs energy correspinding to blue- green region and jumps from t2g to eg set of d-	
	orbital $(t_{2g}^1 e^0 g \longrightarrow t_{2g}^0 e^1 g)$, Bu + Sc ³⁺ has no e ⁻ in the d ⁻ orbital.	
Ans11	a) $Ag^{+-} 4D^{10}$, $Cu^{2+}-3d^9$, $Mg^{+2}- 25^2P^6$, $Cu^{+}-3d^{10}$	
111311	CuF2 is coloured due to unpaired e ⁻	
	b) $Mn^{+6} - 35^2 3P^6 45^1$ can lose e ⁻ to attain stable configuration. Where as cr ⁺⁶ - $35^2 3P^6 45^0$	

	c) This is due to filling of uf orbitals which have poor shielding effect (Ian thonoid conterction). d) The lowes oxide of transition metal is basic because the metal atom has low axidation state it can donte valence electron whichare not involved in bonding to act like a base. While highest is acidic due to highest oxidation state as the valence electrons are involved in bonding and are unavailable (MnO basic whereas Mn_2O7 is oxidic) e) $Mn^{2+} - d^5$ configuration.	
Ans12	 a) There is a gradual decrease in the atomic sizes of transition elements in a series with increasing atomic numbers due to poor shielding effect of d- electrons, the net electrostatic attraction between the nucleus and the outer most electrons increases. b) This is due to filling of 4 f –orbitals which have poor shielding effect. c) The E⁰ value for Mn³⁺ / Mn²⁺ couple is much more positive than Cr³⁺ / Cr²⁺ couple or Fe³⁺ / Fe²⁺ couple because Mn³⁺ ion receiving an electron gets d- subshell half filled which is highly stable, while in case of Fe³⁺, d – subshell is already half- filled, so it does not receive electron easily. d) The transition elements have great tendency for complex formation due to presence of vasant – d- orbitals of suitable energy, small size of cation and higher nuclear cherge. e) Due to lanthanoid contraction, they have almost same size (Zr = 160pm) and (HF = 159 pm) 	
Ans 13	 a) As the size decreaes covalent character increases. Therefore La₂O₃ is more ionic and Lu₂O₃ is more covalent. b) As the size decrease from La to Lu, stability of oxosalts also decrease. c) Stability of the complexes increases as the size of Lanthanoids decreases. d) Radii of 4d and 5d block elements will be almost same. e) Acidic chracter of oxides increaes from La to Lu. 	

Chapter-9 Co-ordination Compounds (Marking scheme)

Ans1	$[Co(NH_3)_6] Cl_2 \underline{aq} [Co(NH_3)_6]^{2+} + 2Cl^{-}.$	
	Three ions are produced.	
Ans 2	When a bidentate or a polydentate ligand contains donor atoms positioned in such a way that when	
	they coordinate with the central metal ion, a five or six membered ring is formed eg [Pt CI_2 (en)]	
Ans 3	There will be three isomers : is and trans- isomers. Is will also show optical isomerism.	
Ans4	Because CO forms bonds.	
Ans5	i) $3(I) + x + 6(-1) = 0$ $K_3[Fe(CN)_6]$	
	x = +3	
	ii) $x - 4 = -2$ [Pt Cl ₄) ²⁻	
	x = +2	
Ans 6	It is due to the presence of weak and strong ligands in complexes, if CFSE is high the complex will show	
	low value of magnetic moment eg $[CoF6]^{3-}$ and $[Co(NH_3)_6]^{3+}$, the former is paramagnetic and the latter is	
	diamagnetic.	
Ans 7	i) Linkage isomerism : The isomers which have same molecular formula but differ in the linkage of ligand	
	atom.	

Ans1	CH ₃ CH ³ ₃ - C_{1}^{2} C ¹ H ₂ Br 1 bromo – 2,2 dimethyl propane CH ₃
Ans2	Stereoisomers which are non-superimposable mirror images of each other are called enantiomers. The enantiomers of 3 methyl pent – 1- ene are.
	$\begin{array}{c} CH_{3} \\ H \\ -C \\ CH_{2}CH_{2} \end{array} \qquad \begin{array}{c} CH_{3} \\ CH_{2} \\ CH_{2}CH_{3} \end{array} \qquad \begin{array}{c} CH_{3} \\ CH_{2} \\ CH_{2} \\ CH_{2} \\ CH_{2} \\ CH_{2} \\ CH_{3} \end{array} \qquad \begin{array}{c} CH_{3} \\ CH_{2} \\ CH_{2} \\ CH_{3} \\$
Ans 3	As chloroform is slowly oxidised by air in presence of light to an extremely poisonous gas phosgene. $2CHCI_3 + O_2 \xrightarrow{\text{Light}} 2COCI_2 + 2HCI$ Phosgene
Ans 4	 i) KCN is predominantly ionic and provides CN- ion in solution. The attack takes place mainly through carbon atom and not through nitrogen atom as C-C bond is more stable than C-N bond. In contrast AgCN is mainly covalent in nature and nitrogen is free to donate electron pair forming isocyanide as the major product. ii) In aqueous solⁿ, KOH is almost completely ionised to give OH⁻ ions which being a strong nvdephile brings about a substitution reaction to form alcohol. Or in aq. solⁿ basic character of OH⁻ decreases/ In nonaqueous medium- alcoholic OR⁻ ion being a much stronger base than OH⁻ eliminates a molecule of HCL from an alkyl chloride to form alkene.
Ans 5	 Haloarenes are much less reactive than haloarenes due to : i) Resonance effect – C-X bond acquies partial double character due to resonance. ii) In haloarenes C is sp² hybridised C-X bond length is shorter than m haloalkane. iii) Sp² - C is more electronegative and less polar. iv) phenyl cation is less stable.
Ans 6	 i) 1 Bromopentane > 2 Bromopentane> 2 Bromo 2 methyl butane. ii)
Ans 7	 Freon – 12- i) Used as propellants. ii) For aerosol and foams to spray out deodorants. iii) As a referigerant. CCl₄ i) As feedstock for synthesis of chloroflorocabons ii) As a solvent iii) As referigerant and propellant. Iodoform i) As an antiseptic for dressing wounds. ii) As iodoform test to differntiate methy 1 ketons and methyl carbionols from other ketones and alcohols.
Ans 8	$\begin{array}{c} CH_{3} \\ 2 CH_{3} \\ H \\ H \\ CH_{3} \\ H \\ H \\ CH_{3} \\ H \\ CH_{3} \\ H \\ H \\ CH_{3} \\ H \\ H \\ H \\ CH_{3} \\ H \\ $

N2U culny ili Ans 9 Sandmeyer Reaction. 1) cuibr/Her [] + N2 Fittig Reaction Dry Gener (2)-cu + 2Na + cu-cu3 -> (2)-cus +2Na cl Wurtz Filtig Reaction Dow's Process 1) + 2 NaOH (ag) 623K (I) ut (Phenol Fonketstein Reachon CH3CH2Br+Naz Acetone CH3CH2I+NaBr Swarts Reactron. CU3 Br + Ay F -> CU3 F + Ag Br Ans 10 ;) SN, Mechanism $(CH_3)_3 C_T Br - \overset{H^T}{=} (CH_3)_3 - c^T + Br$ $\tau = K (CH_3)_3 CRV$ + $OH^ \downarrow$ CN, CHS C'T . -04 + Ch, Miclesphile J CMJ 24, no Racemic mixture b) Hundiecker Reaction. CH3 coo Ag + Bry Cla CH3Br + AgBr + 602 Gattermann Reaction Culture IT JUEN2 Saytzeff Elmmatron. $CH_3 - CH_2 - CH_2 - CH_3 = CH_3 - CH_3$ major product $CH_3 - CH_2 - CH = CH_2$ miner product

Ans 1	PCC	
Ans 2	Ehers are insoluble in water because due to the bigger size of the alkyl group, the oxygen atom in	
	ethers fails to form intermolecular H ⁻ bonds with water.	
Ans 3	a) Phenol and Benzyl alcohol.	
	Phenol gives a violet colouration with $FeCI_3$ solution while benzyl alcohol does not.	
	$6 C_6 H_5 OH + FeCl_3 \longrightarrow [(C_6 H_5 O)_6 Fe]^{3-} + 3HCl + 3H^+$	
	Violet colouration.	
	b) Butan-z-ol when warmed with NaOI (I_2 / NaOH) gives yellow ppt of iodoform while 2 methyl propan – 2- ol does not give this test. Δ	
	CH ₃ - CH ₂ – CHOHCH ₃ + 4I ₂ + 6 NaOH \rightarrow CHI ₃ \checkmark + CH ₃ CH ₂ COO ⁻ Na ⁺	
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	
	$(CH_3)_3$ C-OH + I ₂ + NaOH → No reaction.	1
Ans 4	10	
	Nazchon uzsor	1
	OMg By	
	Cyz-c-cyz + cyz Wig By Detter cyz-c-cyz +40	1
	eng eng eng eng eng	1
	$CH - C - eH_2$	1
	CU3	1
	Ht M Add	1
	$\frac{cu_3 - cu_2 - cu_2 + u_2 o}{bu}$	1
Ans 5	<u> </u>	
	1 42 504 Conc. TSO3 4 CONCHINO, NO, TI TO2	1
	sgu hoz	
	Pierie acid.	1
	CH3 CH-	1
	CH3-CH-C4204 SUCI2 CH3-CH-C42CH ICON(alc)	1
	5 <u>C</u> ⁴ 3	1
	$c_{13} = c_{2} = c_{12}$	1
	0C43 04	
	(1) + HI 373K () + CU3I	1
Ans 6	All cresols are weaker acids than phenols, Methyl gp (+I) effect as well as hyperconjugation effect. Both	
	effects increase the electron density in the O-H bond hence all the cresols are weaker acid, than	1
	phenols.	
	ocresol < p cresol < m – cresol < phenol- at meta position no hyperconjugation effect.	
Ans7a)	$CH_3 - CH_2 - CH_2 - CH_2 + CH_3 CH_2 I$ $CH_3 - CH_2 - CH_3 - $	
	CH3 CH3	
b)	$c_{H_2}c_{H_2}, c_{H_2}, o_{H_2} + c_{H_2} - c_{-7}$	
0)		
c)	(1)-cu2I+ (1)-ou.	
	La La La	

Ans 81 Protonation of alleene to form carbocation. M2 0: + Ut - Us 0: + $) c = c + u - \frac{u}{2} \rightarrow - \frac{u}{2} - \frac{u}{2} + \frac{u}{2} \hat{o};$ Ш Deprotonation to form alcohol. $-\frac{1}{2} - \frac{1}{2} - \frac$ Ш Remor Tiemann Reaction one Ans9 DNJ Ti Teuce, Mady cuo 340 LC J Ut Salrayaldehyde. ou ou -econa ut (--salrali Kolbe's Reachon. ong coz 400k 4-Tatm Saligtre acro Fries Reamangement. ou Devens Arcs (1) + (1) purcocu LOCH. Williamson Synthesis C245-I + C2450Na B.Bak C45-0-C245-+NaI SN2 C45-0-C245-+NaI a) Lucas Test – Alcohol is treated with Lucas reagent equimolar mixture of HCl and ZnCl₂. Ans 10 If turbidity appears immediately 3[°] alcohol is indicated. If turbidity appears after 5 minutes 2^o alcohol is indicated. b) Ether- used as a solvent at low temperature. As industrial and extracting solvent.

Chapter-12

- ·	Y	
Ans1	$\frac{R}{L=0: + H} \rightarrow \frac{R}{L} \rightarrow \frac{C}{H} \rightarrow \frac{R}{H} \rightarrow \frac{E}{H} \rightarrow \frac{E}{H}$	
	Acidic proton results into the protonation of carbonyl group resulting into increase in electrophilicity of carbonyl carbon.	
Ans2	 a) Tollin's reagent, Corey's reagent b) Jones reagent, PCC/ CrO₃ in (CH₃CO)₂O/ CrO₂ Cl₂ 2H₂O. 	
Ans3	$ \begin{array}{c} a \\ c \\ m_3 - c \\ - c \\ m_2 $	
	(5) F-L	
Ans4	$\frac{cH_3 - c_0 c_{H_3}}{c_{H_3}} \xrightarrow{c_{H_3} c_{H_3} c_{H_3} c_{H_3} + H_2 0}{c_{H_3} c_{H_3} c_{H_3} + H_2 0}$ $\frac{c_{H_3} - c_0 c_{H_3}}{c_{H_3} c_{H_3} c_{H_3} + H_2 0}$ $\frac{c_{H_3} - c_{H_3} c_{H_3} + H_2 0}{c_{H_3} c_{H_3} + H_2 0}$ $\frac{c_{H_3} - c_{H_3} c_{H_3} + H_2 0}{c_{H_3} c_{H_3} + H_2 0}$ $\frac{c_{H_3} - c_{H_3} c_{H_3} + H_2 0}{c_{H_3} c_{H_3} + H_2 0}$ $\frac{c_{H_3} - c_{H_3} c_{H_3} + H_2 0}{c_{H_3} c_{H_3} + H_2 0}$ $\frac{c_{H_3} - c_{H_3} c_{H_3} + H_2 0}{c_{H_3} c_{H_3} + H_2 0}$ $\frac{c_{H_3} - c_{H_3} c_{H_3} + H_2 0}{c_{H_3} c_{H_3} + H_2 0}$ $\frac{c_{H_3} - c_{H_3} c_{H_3} + H_2 0}{c_{H_3} c_{H_3} + H_2 0}$ $\frac{c_{H_3} - c_{H_3} c_{H_3} + H_2 0}{c_{H_3} c_{H_3} + H_2 0}$ $\frac{c_{H_3} - c_{H_3} c_{H_3} + H_2 0}{c_{H_3} c_{H_3} + H_2 0}$ $\frac{c_{H_3} - c_{H_3} + H_2 0}{c_{H_3} c_{H_3} + H_2 0}$ $\frac{c_{H_3} - c_{H_3} + H_2 0}{c_{H_3} - c_{H_3} + H_2 0}$ $\frac{c_{H_3} - c_{H_3} + H_2 0}{c_{H_3} - c_{H_3} + H_2 0}$ $\frac{c_{H_3} - c_{H_3} + H_2 0}{c_{H_3} - c_{H_3} + H_2 0}$ $\frac{c_{H_3} - c_{H_3} + H_2 0}{c_{H_3} - c_{H_3} + H_2 0}$ $\frac{c_{H_3} - c_{H_3} + H_2 - c_{H_3} + H_2 0}{c_{H_3} - c_{H_3} + H_2 0}$ $\frac{c_{H_3} - c_{H_3} + H_2 - H$	
	$\begin{array}{c} CH_{3} \\ H \geq = 0 + H CN P^{H} \frac{9}{4} \frac{2}{9} \\ H \geq CN \\ \hline \\ ethanal cyanohydrin \end{array}$	
Ans5	a) FCH_2COOH or $CICH_2 COOH$ F with – I effect stronger than Chlorogroup withdraws electron from carboxylate anion resultin into stabilisation of carboxylate anion. (conjugate base). Fe $cu_2 - c^{\mu\nu}$ $cu_2 - c^{\mu\nu}$ $cu_2 - c^{\mu\nu}$ $cu_2 - c^{\mu\nu}$ $cu_2 - c^{\mu$	
	$ \begin{array}{c} & & & \\ & &$	
	Aromatic carboxylate anion is resonance stabilised with sp ² hybridised carbon atom of benzene ring hence it is more stable relative to aliphatic acetate ion (no resonance) with +I effect of methyl gp (sp ³ hybridised less electronegative, less electron withdrawing.	
Ans6	a) $2CH_3CHO \xrightarrow{\text{dil NaOH}} CH_3 - CH - CH_2 - CHU$ b) $CH_3 - COCH_3 \xrightarrow{2n/Hg} CH_3 CH_2 CH_3$	

	c) coor cou cho c) socia del Halped Basoq	
	Benzaldehyde	
Ans7	a) Tollen's reagent can oxidise benzaldehyde to benzoic acid whereas Benedit sol ⁿ cannot oxidise aromatic aldehyde.	
	b) <u>CH</u> = 0 <u>CH</u> = 0 <u>Due to prevence of</u> <u>u</u> <u>ch</u> = 0 <u>Due to prevence of</u> <u>tho +I effect metry</u>) <u>grap ketomes ou</u> <u>less reacher towards mucleophilic substitution</u> <u>reaction</u> .	
Ans8	 a) CH₃CHO> CH₃COCH₃> C₆H₅COC₆H₅ b) 3,4 dinitrobenzoic acid ? 4 nitrobenzoic acid > benzoicacid > 4 methoxybenzoic acid 	
Ans9	Resenmund Reduction :	
	$CH_3 = \frac{10}{c} - cl + H_2 = \frac{Pd/Baso_4}{s} = \frac{0}{cH_3 - c} + Hcl$	
	Cross Aldol Condensation	
	$H = c - n + H = c u_2 - c - H = d H Na 0 u_1 - c u_2 - c u_2$	
	HVZ Reaction. CU3CU2 COOU CI2/Red P CU3-CH - CCOH U20 CL 2 Chloropopanoic aud.	
	Clemmensen Reduction: COCU3 (1) + A(H) 2n/Hg, HCL(conc) + H20	
	CU3 UNNU2 CU3 CU3 UNNU2 CU3 CU3 CU3 CU3 CU3 CU3 CU3 CU3 CU3 CU3 CU3	
Ans10	10. Chemical Test i) Ethanal responds to iodoform test while propanal does not CH3CHO + 3 NaOI NaOHIZ, CHI3 I + HODNA + 2NAOH A yellow ppt ii) Benzoic acid on reaction with sodium hydrogen carbonate gives out CO2 gas with efferves conce while ethyl benzoate does (1) + NAHECO3 → (0) + H2O + CO2 I in) Acetophenone responds to iodoform test but not benzoldehyd COCH3 + 3NAOI → (1) + CHI3J + 2NAOH iv) Iodoform test given by propanone but not propanal CH3 = -CH3 + 3NAOI → CHI3J + CH3 CONA + 2NAOH	
	With neutral feCl ₃ phenol gives violet, blue coloured complex while benzoic acid gives buff coloured product.	

Chapter-13 Organic

Ans 1	Al H3N= ~- soz, sulphanilicaeid.	
Ans 2	 i) In primary amines, two hydrogen atom are present on N-otom and they undergo extensive intermolecular hydrogen bonding which results in association of molecules while in tertiary amines, no hydrogen atom is present on N-atom. Hence there is no hydrogen bonding in tertiary amines. ii) Aliphatic amines are stronger bases than aromatic a mines because : a) Due to resonance in aromatic amines, the lone pair of electrons on the nitrogen atom gets delocalized over the benzene ring and thus is less easily available for protonation. b) The aryl amine ions have lower stability than corresponding alkyl amines ie. Protonation of aromatic amines is not favoured. 	
Ans 3	A3.(1) $cy_3 - cy_2 - niH_2 + cy_3 - c - cl - cy_3 cyges Ethanoyl chloride \intcy_3 - c'' - NH - cy_3 - cy_3 + HclN - Ethyl ethanamide(ii) cy_3 - cy_2 - cl alckcy cy_3 - EH_2 - cNna/cy_5 - cy_2 - NH_2propage - 1 - amine$	
Ans 4	$\begin{array}{c} C_{6}H_{5}\ CH_{2}NH_{2}\ reacts\ with\ HNO_{2}\ at\ 273-278\ K\ to\ give\ diazonium\ salt,\ which\ being\ unstable,\ deconsposes\ with\ brisk\ evolution\ of\ N2\ gas. \\ C_{6}H_{5}\ CH_{2}NH_{2}\ \hline \\ \hline \\ C_{6}H_{5}\ CH_{2}NH_{2}\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ C_{6}H_{5}\ -\ CH_{2}OH\ +\ N_{2}\ \bigstar\ HCl\ \\ \hline \\ \hline \\ H_{2}O\ \hline \\ C_{6}H_{5}\ -\ CH_{2}OH\ +\ N_{2}\ \bigstar\ HCl\ \\ \hline \\ H_{2}O\ \hline \\ \hline \\ \hline \\ C_{6}H_{5}\ -\ CH_{2}OH\ +\ N_{2}\ \bigstar\ HCl\ \\ \hline \\ \hline \\ H_{2}O\ \hline \\ \hline \\ C_{6}H_{5}\ -\ CH_{2}OH\ +\ N_{2}\ \bigstar\ HCl\ \\ \hline \\ \\ H_{2}O\ \hline \\ \hline \\ \hline \\ C_{6}H_{5}\ -\ CH_{2}OH\ +\ N_{2}\ \bigstar\ HCl\ \\ \hline \\ \hline \\ H_{2}O\ \hline \\ \hline \\ \hline \\ C_{6}H_{5}\ -\ CH_{2}OH\ +\ N_{2}\ \bigstar\ HCl\ \\ \hline \\ \hline \\ \hline \\ H_{2}O\ \hline \\ \hline $	
Ans 5	 i) Aniline to fluoro benzene Asin Aniline to bluoro benzene Mar Nt ce if CH3CI alcKCN CH3 - CN LiALH4 CH3 CH2 NH2 	
Ans 6	i) $C_6H_5 N_2^+Cl^ \frac{H_1PO_1^+H_1O_1^-}{3 - 2 - 2} C_6H_6 + N_2^+ H_3PO_3^- + HCL$	
	(iii) (1) Berlag, Berlag, Br	
Ans 7	P- nitroniline < aniline < P-toluidine < N,N – dimethyl- P- toluidine	

Chapter- 14 Biomolecules

Ans 1	Anomers are stereoisomers which differ in orienta glucose.	atiion of OH only around C-1. Eg α glucose and β
Ans 2	Nucleoside consisits of a base joined to sugar mol Guanosme contains guanine and ribose, cytidme con	
Ans3	Tertiary structure of protein includes folding and the compact and folded structure. It involves H- bondin interactions, giving fibrous and globular structure.	
Ans4	a) Fibrous i) Long linear thread like polymeric chains ii) Insoluble in water iii) Not affected by change of ten and pressure iv) Keratin, Myosin b) Oligopeptide i) A few amino acid upto 10 ii) Found in tissues as hormor vasopresim, oxytoxin	change in temp and pressure iv) Harmones, Insulin Polypeptide i) Lart no of α amino acids 50 and above.
Ans5	 α Heli x secondary structure Intramolecular Hydrogen bonding α 3.6 helix. b) Pernicious Anaemia 	B pleated sheet structure Intermolecular H-bonding zig-zag chain.
Ans6	$ \begin{array}{c} H \\ \mu \\ \mu$	
Ans7	b) $\frac{M_2}{M_2}$ $\frac{M_2}{R-CH-CODH}$ $\frac{M_2}{M_3}$ $\frac{M_2}{M_3}$ $\frac{M_2}{R-CH-COD}$	ion of amino acid under the influence of applied tter ion dipolar internal salt.
Ans8	DNA a) The sugar present is 2-deoxy-D(1_ ribose b) It contains cytosine and thymine c) It has double stranded α helix structure d) Undergoes replication	RNA

Ans9	The process by which a DNA molecule produces two identical copies of itself is called duplication. It is semiconservative. In the DNA double helix, the sequence of bases in one chain is complementary to the sequence of other A = T, C \equiv G. It takes place only in 5 ¹ – 3 ¹ direction.
Ans10	a) Glycosidic Linkage : The linkage between two monosaccharides through oxygen atom in an oligosaccharide or polysaccharide is known as Glycosidic linkage (1,2, or 1,4)
	b) Zwitter Ion- NH_2 NH_3^+ $R-CH - COOH = R-CH - COO^-$
	Zuitter Ion/ Dipolar Salt
	c) Denaturation of Protein : When a native protein is subjected to a change in temp or pH, hydrogen bonds get disturbed. Globules unfold and helix gets uncolled and protein loses its biological activity. Primary structure remains intact.
	d) DNA as each DNA sequence of bases is unique to an individual therefore DNA from hairstrand, fingertips are matched to find out forgery, pattern of evolution to determine paternity and in criminal investigation. It's an important tool in forensic investigation.
	e) Reducing Sugar : Those carbohydrates which contain free aldehydec or ketonic group an and reduces Fehling's solution and Tollen's reagent are called reducing sugars. All monosaccharides maltose and lactose.

Chapter-15

Polymers

Apr 1	Puna S noonrono				
Ans 1	Buna- S, neoprene				
Ans2	Vulcanisation is a process of heating natural rubber with sulphur. This is done to make rubber more				
Ans3	elastic, hard, more adoration resistant by sulphur cross linking.				
AIISS	 a) Buna-S ÷ 1,3- Butadiene and styrene used fomr Automobile, tyres. b) Buna –N ÷ Butadiene and acrylonitrile used for storing oil and solveats. 				
Ans4					
AII54	enzymatic hydrolysis or by oxidation in environment are called biodegradable polymers eg : nylon -2-				
	nylon-6, protein.				
Ans5		intermolecular forces of attraction intermediate			
AIISS		near or slightly branched chain polymers capable of			
	repeatedly softening on heating and hardening on cooling eg : polyvinyl chloride.				
	b) These polymers are cross-linked : Orheavily branched molecules which on heating undergo				
	extensive cross-linking in moulds and again become infusible. These polymers cannot be				
	resphaped eg: Bakelite, urea- formaldehyde				
Ans6		addition of some or different monomer molecules.			
	The monomers used are unsaturated compounds eg polythene				
	$nCH_2 = CH_2 333-343 - (CH_2 - CH_2)_n$				
	Ethene Ziegler – Natta-catalyst Highdensity Polythene				
	b) Condensation polymers : formed by the repeated condensation reaction between different				
	bifunctional or trifunctional monomer units usually with elimination of small molecules such as				
	water, alcohol and HCI leg Nylon – 6, nylon -6,6 and terylene.				
	c) Biopolymer : Polymer which disintegrate by themselves over a period of time either by bacterial				
	degradation or by enzymatic hydrolysis or by oxidation in environment eg synthetic polymers				
A 7	such as PHBV.				
Ans7	GI	C11			
	a) Neoprene : Chloroprene $CH_2 = C - CH = CH_2$				
	b) Dacron : Ethylene glycol $HOCH_2 - CH_2OH$ c) Nylon – 6,6 : Hexamethylene diamine : NH_2 -(CH_2) ₆ – NH_2				
	c) Nylon – 6,6 : Hexamethylene diamine : NH_2 -(CH_2) ₆ – NH_2 Adipic acid COOH- (CH_2) ₄ – COOH				
Ans8	a) Navolac	Bakelite			
////30	1. Linear product	1. Cross link product			
	2. Used in paints	2. Used for making combs, electrical			
		switches.			
	b) Neoprene	Polyisoprene			
	1. Artificial rubber	1. Natural rubber			
	2. Co polynner	2. Linear polymer			
	c) I) Chaingrowth polymer : Iddition polymerisation eg polysthene				
	ii) Stepgrowth polymer : With elimination of simple molecule such as water, alcohol eg : Nylon –				
	6,6.				
Ans9	a) LDPE : $nCH_2 = CH_2$ <u>350-570K</u> - $(CH_2 - CH_2)$)n-			
	1,000-2000atm LDPE				
	b) Teflon: $nf_2 = CF_2 (NH_4)_2S_2O_8 - (CF_2 - CF_2)_n -$				
	High prwessure				
	Tetrafluoroethene Teflon				

c. Nylon 6 0 11- (cn2)= 425 C=0 533-543K · Not cn2 420 Nylon-H2C Capeolactum d. Buna-s $cy = cy_2$ $n cy_2 = cy - cy = cy_2$ cy - cy = cy - cy = cy0 1,3-Butadiene Styrene Butadiene-Style (Copolymes e. Terylene 0 0 + 94-0-04 nHo Terephthalic acid Ethi 420-460K 3-cy_-cm Texplene a) PHBV : speciality parkaging , orthopaedic devices and controlled refease of drugs. Ans10 b) Teflon : Making oil seals and gaskets, coating untensiss to make them non - sticky. PVC : Manufacture of rain coats, waterpipes, electricla insulation C) d) Nylon : Fibre, plastic, tyre cords and ropes. e) Buna – N : Storing oil and solvents.

Drugs which produce a therapeutic and useful biologicla response.Unlike soaps, detergents can be used in hard water because like sodium salts, calcium and magnesium	
salts of sulphonic acids are soluble in water.	
a) Antiseptics : Are the chemical substances which prevent the growth of microorganism or even	
kill them but are not harmful to living human tissues eg: dettol, soframycin, boric acid,	
hydrogen peroxide.	
b) Disinfectants : These are the chemical substances which kill microorganisms or stop their	
growth but are harmful to human tissues eg : Phenol (1%), Chlorine in Concentration of 0.2 to	
0.4 ppm in aqueous solution, SO ₂ .	
These are the chemical compounds which are non- nutritive in nature and are used as substitutes for	
sugar in foods and beverages especially soft drinks eg : Saccharin, Aspartame, Alitame, Sucrolose.	
a) Antacids : Chemical substances which remove the excess acid in the stomach and raise the pH	
to appropriate level eg : NaHCO ₃ , ranitidine.	
b) Antihistamines : are the drugs which interfere with the natural action of histamines by	
competing with histamine for binding sites of receptor where histamine exerts its effects.	
Eg : Brompheniramine, terfenadine.	
c) Antimicrobioal tenols to destroy or inhibit the pathogenic action of microbes such as bacteria,	
fungi, or other parasites, selectively. Antiseptics, disinfectants and antibiotics are antimicrobial	
drugs.	
a) <u>Transquilisers</u> : are a class of chemical compounds used for the treatment of stress, fatique and	
mild or even severe mental diseases. These r elative anxiety, stress, irritability or excitement by	
inducing a sense of well being eg : chlordiaze- proxide, lproniazid and phenelzine.	
b) <u>Narcotic Analygesics</u> : These are the drugs which when administered in small doses relieve pain	
and produce sleep. Alkaloids like morphine, codeine and heroin belong to the class of narcotic	
analgesics. These are chiefly used for the relief of postoperative pain, cardiac pain and pains of	
termincal cancer, and in child birth.	
c) Food preservatives : These are the chemical substances which are added to the food materials	
include table salt vegetable, oil, sugar, potassium metabisulphite and sodium benzoate.	
Drugs can block the binding site of the enzyme and prevent the binding substrate or can inhibit the	
catalytic activity of the enzyme.	
a) Large part of their molecules are cations and it is the cationic part of the molecule which is	
5 5 1 J	
, , , , , , , , , , , , , , , , , , ,	
о I о	
Taroana no giobalos provents mentinent conting tegether and terning aggregates.	
Saponification is a process by which triglyccrides are reacted with sodium or potassium hydroxide to produce	
	 kill them but are not harmful to living human tissues eg: dettol, soframycin, boric acid, hydrogen peroxide. b) Disinfectants : These are the chemical substances which kill microorganisms or stop their growth but are harmful to human tissues eg : Phenol (1%), Chlorine in Concentration of 0.2 to 0.4 ppm in aqueous solution, SO₂. These are the chemical compounds which are non- nutritive in nature and are used as substitutes for sugar in foods and beverages especially soft drinks eg : Saccharin, Aspartame, Alitame, Sucrolose. a) Antacids : Chemical substances which remove the excess acid in the stomach and raise the pH to appropriate level eg : NaHCO₃, ranitidine. b) Antihistamines : are the drugs which interfere with the natural action of histamines by competing with histamine for binding sites of receptor where histamine exerts its effects. Eg : Brompheniramine, terfenadine. c) Antimicrobioal tenols to destroy or inhibit the pathogenic action of microbes such as bacteria, fungi, or other parasites, selectively. Antiseptics, disinfectants and antibiotics are antimicrobial drugs. a) Transquilisers : are a class of chemical compounds used for the treatment of stress, fatique and mild or even severe mental diseases. These relative anxiety, stress, irritability or excitement by inducing a sense of well being eg : chlordiaze- proxide, lproniazid and phenelzine. b) Narcotic Analygesics : These are the drugs which when administered in small doses relieve pain and produce sleep. Alkaloids like morphine, codeine and heroin belong to the class of narcotic analgesics. These are the chemical substances which are added to the food materials to prevent their spoilage due to microboial growth. The most commonly used preservative include table salt vegetable, oil, sugar, potassium metabisulphite and sodium benzoate. Broad spectrum antibiotics are effective against several different types of harmful bacteria. Eg : are tetracycline, ofloxacin, chl